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Ordinality is a fundamental aspect of numerical cognition. However, preverbal infants’ ability to repre-
sent numerical order is poorly understood. In the present study we extended the evidence provided by
Macchi Cassia, Picozzi, Girelli, and de Hevia (2012), showing that 4-month-old infants detect ordinal rela-
tionships within size-based sequences, to numerical sequences. In three experiments, we showed that at
4 months of age infants fail to represent increasing and decreasing numerical order when numerosities
differ by a 1:2 ratio (Experiment 1), but they succeed when numerosities differ by a 1:3 ratio
(Experiments 2 and 3). Critically, infants showed the same behavioral signature (i.e., asymmetry)
described by Macchi Cassia et al. for discrimination of ordinal changes in area: they succeed at detecting
increasing but not decreasing order (Experiments 2 and 3). These results support the idea of a common
(or at least parallel) development of ordinal representation for the two quantitative dimensions of size
and number. Moreover, the finding that the asymmetry signature, previously reported for size-based
sequences, extends to numerosity, points to the existence of a common constraint in ordinal magnitude
processing in the first months of life. The present findings are discussed in the context of possible evolu-
tionary and developmental sources of the ordinal asymmetry, as well as their implication for other
related cognitive abilities.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The ability to represent and discriminate quantities is founda-
tional to human reasoning, and is considered one of the core
knowledge systems upon which humans build new concepts and
abilities (Carey, 2009; Gallistel & Gelman, 2000; Spelke, 2011).
Human and non-human animals use this ability in everyday activ-
ities, from detecting the greatest patch of food in the wild to solv-
ing more or less sophisticated math problems. During the last few
decades, cognitive science has provided strong evidence in support
to the view that numerical estimation and reasoning may rest on a
core cognitive system (Dehaene, 1997; Feigenson, 2007), which is
evolutionary ancient (Vallortigara, Regolin, Chiandetti, & Rugani,
2010), functional at birth (Coubart, Izard, Spelke, Marie, & Streri,
2014; de Hevia, Izard, Coubart, Spelke, & Streri, 2014; Izard,
Sann, Spelke, & Streri, 2009), and universal across different cultures
(Dehaene, Izard, Spelke, & Pica, 2008). In humans, formal mathe-
matics is thought to build on this so-called ‘number sense’, the fac-
ulty that allows us to perceive the cardinality of sets intuitively
(Burr & Ross, 2008; Butterworth, 1999; Dehaene, 1997).

Increased interest in the processing of ordinality, as a numerical
aspect distinct from cardinality, has emerged very recently in the
study of human adult numerical cognition (Delazer & Butterworth,
1997). In particular, some neuroimaging and neuropsychological
studies with adults suggest that processing of ordinal and cardinal
information dissociate at both the behavioral and biological levels
(Rubinsten, Sury, Lavro, & Berger, 2013; Turconi, Jemel, Rossion, &
Seron, 2004; Turconi & Seron, 2002). It has been recently proposed
the existence of a core system for representing ordinal information,
which would allow us to automatically analyze any perceptual
input based on the ordinal information it conveys (Rubinsten
et al., 2013).

Evidence for ordinality as a foundation of numeracy comes from
studies where ordinality comprehension is critical for arithmetic
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performance in both adults (Lyons & Beilock, 2011) and school-
aged children (Lyons, Price, Vaessen, Blomert, & Ansari, 2014). In
a large cross-sectional study with children in Grades 1–6, Lyons
et al. (2014) showed that the understanding of ordinality is a
unique predictor for children’s math abilities, and that by Grade
6 it is the most significant basic numerical predictor. Yet, most of
these studies investigated order processing of symbolic numbers,
and, critically, it has been recently claimed that ordinal processing
may substantially differ between symbolic and non-symbolic
numbers. In particular, based on both behavioral and neural data,
Lyons and Beilock (2013) proposed that symbolic number ordering
relies largely on associations between elements, mostly estab-
lished and consolidated through counting routines, rather than
on the magnitude of the elements themselves. On the contrary,
ordinality in non-symbolic numbers would mainly emerge from
iterative cardinality judgments (i.e., comparing each pair of
numerosities in succession), as magnitude is intuitively and readily
available to non-symbolic numbers. Accordingly, Lyons and Beilock
(2013) showed that non-symbolic ordinal and cardinal processing,
together with cardinal, but not ordinal, processing of symbolic
number, elicited overlapping responses in a canonical number pro-
cessing area of the brain (i.e., right IPSa; Dehaene, Spelke, Pinel,
Stanescu, & Tsivkin, 1999), signalling access to quantitative
information.

Therefore, although this is still a topic for further investigation,
we could expect ordinal processing of non-symbolic numbers to be
even more strictly linked to numeracy than symbolic ordinal pro-
cessing. Along these lines, evidence for altered ordinal estimation
of non-symbolic numerosities has been reported in adults with
developmental dyscalculia (DD), suggesting that a deficit in non-
symbolic order processing might be characteristic of DD
(Rubinsten & Sury, 2011). The hypothesis that (non-symbolic) ordi-
nal knowledge may critically contribute to the early acquisition of
numerical skills and, later on, to mathematical learning, calls for a
full understanding of its origins and development. To this aim, the
goal of the current study was to explore the presence of numerical
ordinal knowledge in preverbal infants.

Non-verbal numerical cognition is thought to be achieved
through two different cognitive mechanisms (Feigenson, Carey, &
Hauser, 2002; Hyde, 2011). On the one hand, the analog
number system, or ANS (Dehaene, 1997; Halberda, Mazzocco,
& Feigenson, 2008), is thought to represent and operate in an
approximate way over (perhaps any) large numerosity (gener-
allyP 4). Imprecision is a key feature of the ANS and it is respon-
sible for the ratio-dependent performance observed across the life-
span (Halberda et al., 2008): in preverbal infants, the ratio needed
to discriminate two numerosities decreases with age, from a 1:3
ratio at birth (Izard et al., 2009), to a 1:2 ratio from 4-to-6 months
of life (Libertus & Brannon, 2010; Xu & Spelke, 2000), and a 2:3
ratio by 9 months (Lipton & Spelke, 2003). On the other hand, the
object-file system is thought to be responsible for processing small
numerosities (63), being able to individuate and keep track of each
individual object in a precise way. In the current study, we will
focus on computations over the numerical outputs of the ANS, as
we will investigate 4-month-old infants’ capacity to represent
the relationship between three numerical sets each formed by at
least 4 objects and differing one from the other according to a
1:2 (Experiment 1) or a 1:3 (Experiments 2 and 3) ratio.

Besides the ability to represent and discriminate quantities,
preverbal humans and non-human animals have been shown to
operate over representations of both small and large numerosities,
for instance by adding (Livingstone et al., 2014; McCrink & Wynn,
2004) or subtracting them (Brannon, Wusthoff, Gallistel, & Gibbon,
2001; McCrink &Wynn, 2004). A crucial computation on numerical
representation is ordering; however, preverbal infants’ under-
standing of ordinality has received very little attention compared
to numerical discrimination and comparison. This is partially due
to the assumption that understanding the ordinal relation between
numerical sets is a later achievement with respect to the ability to
compare and discriminate numerosities. Developmental research-
ers have indeed proposed that the ability to recognize ordinal rela-
tions, in which more than two numerosities are involved, is
particularly difficult, and that this capacity appears to emerge in
the preschool years (Mix, Huttenlocher, & Levine, 2002). Nonethe-
less, numerical ordering abilities are available in monkeys
(Brannon & Terrace, 1998, 2000; Judge, Evans, & Vyas, 2005), and
even in animal species phylogenetically distant from humans and
other primates, such as rats (Suzuki & Kobayashi, 2000), bees
(Dacke & Srinivasan, 2008), fish (Petrazzini, Lucon-Xiccato,
Agrillo, & Bisazza, 2015), and few-day-old chicks (Rugani, Kelly,
Szelest, Regolin, & Vallortigara, 2010; Rugani, Regolin, &
Vallortigara, 2007). This suggests that the ability to compute ordi-
nal information is a basic skill that might have been selected
because it can enhance survival in several ecological contexts
(Vallortigara et al., 2010). Along these lines, there is evidence that
human infants possess a rudimentary ordinal ability, as they are
able to detect statistically defined temporal patterns in simple
sequences of visual shapes (Kirkham, Slemmer, & Johnson, 2002),
starting from birth (Bulf, Johnson, & Valenza, 2011). However, to
date, little is known about the full-fledged understanding of ordi-
nality in humans during the first months of life.

There is evidence that by the end of the first year infants suc-
ceed at discriminating the ordinal relations (increasing vs. decreas-
ing) characterizing sets formed by non-symbolic numerosities
(Brannon, 2002; de Hevia & Spelke, 2010; de Hevia, Girelli,
Addabbo, & Macchi Cassia, 2014; Picozzi, de Hevia, Girelli, &
Macchi Cassia, 2010; Suanda, Tompson, & Brannon, 2008). After
being habituated to increasing or decreasing sequences of large
numerosities, 7-month-old infants generalize habituation at test
to new numerical displays arranged in the familiar order while
dishabituate to the same displays arranged in a novel order, even
when non-numerical continuous variables are controlled for (de
Hevia, Girelli, et al., 2014; Picozzi et al., 2010). Moreover, 8-
month-old infants habituated to a five-set numerical sequence that
increases (4–8–16–32–64) or decreases (64–32–16–8–4) in
numerosity look significantly longer at test displays that show
five-item line-length sequences following the opposite ordinal
direction, showing that infants at this age are able to abstract the
ordinal information from one dimension (i.e., non-symbolic num-
ber) and apply it to a different one (i.e., surface area) (de Hevia &
Spelke, 2010). Finally, when spatial information is introduced in
the numerical ordinal task 7-month-old infants show a preference
for increasing, left-to-right oriented, numerical sequences and fail
to discriminate order information when numerical sets appear
along a right-to-left orientation (de Hevia, Girelli, et al., 2014).

Still, the view that cardinal understanding precedes ordinal
understanding finds some support in available studies with infants
in the first year of life. While the ability to discriminate numerosi-
ties has been reported to be functional from birth (Izard et al.,
2009), the ability to make ordinal judgments on numerical stimuli
has not been reported in infants younger than 7 months (de Hevia,
Girelli, et al., 2014; Picozzi et al., 2010). Brannon and colleagues
(Brannon, 2002; Suanda et al., 2008) have suggested that the abil-
ity to represent ordinal relations emerges first for continuous
quantities, specifically size, and later extends to numerical quanti-
ties. Accordingly, the authors showed that, although at 9 months
infants are able to discriminate the ordinal direction of size-
based sequences, as well as sequences containing multiple quanti-
tative dimensions including size (i.e., number, element size and
overall area), it is not before the age of 11 months that they can
discriminate ordinal relations within numerical sequences when
continuous dimensions are controlled for. Although the age at
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which infants are able to discriminate ordinal relationships in
numerical and size-based sequences has now been anticipated to,
respectively, 7 (Picozzi et al., 2010) and 4 months (Macchi Cassia,
Picozzi, Girelli, & de Hevia, 2012), no studies have so far explored
the ability to process numerical order before the age of 7 months.

Numerical order is a way to arrange a sequence of numerosities,
and this can be either increasing or decreasing. To investigate
whether ordinal discrimination for numerosities is available before
7 months of age, in the present study we tested 4-month-old
infants’ ability to discriminate inversion in the direction (increas-
ing vs. decreasing) of numerical ordinal relations. Following earlier
investigations on infants’ numerical ordering abilities (Brannon,
2002; Brannon, Cantlon, & Terrace, 2006; Brannon & Terrace,
1998, 2000; Cooper, 1984; de Hevia & Spelke, 2010; de Hevia,
Girelli, et al., 2014; Picozzi et al., 2010; Suanda et al., 2008), in
the current study numerical order is operationalized as the relation
characterizing the progressions (either incrementing or decre-
menting) between at least three non-symbolic numerosities: the
direction of change (increasing vs. decreasing) must be repeated
at least twice and be the same for the numerosities within a given
set (e.g., 6–12–24 or 24–12–6). In this way, order processing
implies iterative ‘greater than’ and ‘less than’ comparisons
between constituent pairs of numbers in a given sequence. This
computation contrasts with the one taking place in numerical dis-
crimination and comparison, as infants can succeed in these tasks
by simply perceiving the numerical dissimilarity between two sets
of objects (e.g., 6– 12) without computing the ‘greater than’ or
‘less than’ relationship between them.

Since earlier studies have shown that infants’ appreciation of
ordinal information is partially disrupted when small and large
numerosities are intermixed within numerical sets (Brannon,
2002; Cooper, 1984; Suanda et al., 2008), possibly due to incom-
patibility between the outputs of the object-file and approximate
number systems, in the current study we presented infants exclu-
sively with numerical sets each composed of at least four items.
Our method was modeled after Picozzi et al. (2010), who added
to their numerical sequences featural information (i.e. color and
shape of the numerical displays) as well as redundant cues to ordi-
nality within and across sequences (de Hevia, Girelli, et al., 2014;
Picozzi et al., 2010). In the present study featural information
was made available to infants as additional cues to ordinality both
within (i.e., items’ shape) and between (i.e., background shape) the
numerical sequences, with the aim of favouring infants’ abstraction
and learning of the ordinal rule. Specifically, the items’ shape co-
varied with number to emphasize the distinctiveness of each con-
stituent display within the sequences, and the background shape of
the displays varied between the sequences to favor clustering of
the sequences. As for the redundant cues to ordinality, numerical
displays were presented in such a way that the same order
(increase or decrease) was present both within and between each
numerical sequence, as in previous studies (de Hevia, Girelli,
et al., 2014; Picozzi et al., 2010): for instance, in the increasing
habituation condition, not only numerosities increased within each
given sequence, but also consecutive numerical sequences were
presented in a fixed increasing order (e.g., first trial: 6, 12, 24; sec-
ond trial: 9, 18, 36; third trial: 12, 24, 48).

If, under these facilitating testing conditions, 4-month-old
infants are able to discriminate numerical order, the finding would
add to earlier demonstration of 4-month-olds’ discrimination of
order in size-based sequences (Macchi Cassia et al., 2012), thus
supporting the view of a common, or at least parallel, development
of the ability to discriminate ordinal information for the two quan-
titative dimensions of size and number. Moreover, we tested 4-
month-old infants because at this age infants’ discrimination of
size order yields a reliable asymmetry, whereby a successful
discrimination of increasing order is accompanied by a failure to
discriminate decreasing order (even when decreasing order is con-
trasted with a random order, Macchi Cassia et al., 2012). Thus, in
the present study the presence of asymmetry in ordinal processing
for numerical sequences would support the idea that the encoding
of ordinality for both quantitative dimensions, number and size,
share a common processing signature. The hypothesis that the
asymmetry signature might be present also for numerical ordinal
discrimination is highly plausible in light of the interpretation of
this phenomenon provided by Macchi Cassia et al. (2012): the
asymmetry might constitute a developmental precursor of the ‘ad-
dition advantage’, which refers to the better performance and ear-
lier acquisition of addition relative to subtraction arithmetic
operations in older children (Baroody, 1984; Campbell & Xue,
2001; Carpenter & Moser, 1984). This advantage has been
described for both symbolic and non-symbolic arithmetics (Barth,
Beckmann, & Spelke, 2008; Shinskey, Chan, Coleman, Moxom, &
Yamamoto, 2009). Given that the addition advantage refers to
computations over discrete numerosities, we hypothesized that if
infants in our study succeed in extracting the ordinal information,
then we might observe the asymmetry (i.e., success with increas-
ing but failure with decreasing sequences) in their performance.

In each experiment of the current study, 4-month-old infants
were habituated to either increasing or decreasing numerical
sequences and were then presented with pairs of test trials alter-
nating both numerical orders. Non-numerical quantitative cues
such as element size, cumulative area, contour length, and density
were controlled during the habituation or the test phase so that
they could not be used as a consistent cue to ordinal
discrimination.
2. Experiment 1 (1:2 ratio)

In Experiment 1 infants were habituated to either increasing or
decreasing numerical sequences, and were tested with new
sequences displaying both the familiar and the novel orders in
alternation. The ratio difference between numerical displays con-
tained in the increasing and decreasing sequences was 1:2.

2.1. Methods

2.1.1. Participants
Twenty-four healthy, full term 4-month-old infants (mean

age = 4 months, 16 days; range = 4 months, 0 days – 4 months,
29 days; 11 female) took part in the experiment. Eight additional
infants were excluded from the final sample because they failed
to complete testing due to fussiness or lack of interest (n = 4;
equally distributed across habituation conditions), looking times
in at least one test trial more than 3 standard deviations (SD) from
the overall group mean (n = 3) or because they did not reach the
habituation criterion (n = 1). Infants were recruited via a database
of parents who had agreed to participate in the study. Parents gave
their informed written consent before testing.

2.1.2. Stimuli
Stimuli were sequences of three numerical displays each con-

taining different rectangular-shaped items with the shorter side
aligned with the horizontal plane (Fig. 1). Items were arranged ran-
domly on a white area that appeared on a black background. Stim-
uli were generated using E-Prime 1.0 software. Three sets of
stimuli were used for the habituation phase and one for the test
phase. The first set of stimuli of the habituation phase was com-
posed of 6, 12, 24 blue (rgb: 0, 0, 255) items contained in a
rhombus-shaped area; the second one was composed of 9, 18, 36
blue items contained in a circle-shaped area, and the third one of
12, 24, 48 blue items in a square-shaped area. The set of stimuli



Fig. 1. Examples of the stimuli presented in Experiment 1, including the three stimuli set used in habituation (left) and the stimuli used in test (right). In habituation,
numerical displays within a given numerical sequence had the same background shape (rhomboid, circular, squared). Numerical displays differed by a 1:2 ratio.
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presented in the test phase was composed of 4, 8, 16 purple (rgb:
201, 28, 195) items contained in a rectangular-shaped area. Thus,
the number of items contained in each sequence differed (either
by increasing or decreasing) by a 1:2 ratio. Three different exem-
plars of each stimulus set were generated by varying item spatial
configuration.

Non-numerical continuous variables were controlled by keep-
ing cumulative surface area and contour length constant within
each habituation set. Therefore, item size and length were inver-
sely correlated to number. For each set, the heights of the single
items in the smaller, medium and larger numerosity display were,
respectively, 3.5, 1.7, and 0.7 cm, with the width constant at
�0.2 cm. The area of each display was held constant at approxi-
mately 256 cm2 within the first set and 260 cm2 within the second
and the third sets, so that number covaried with density. Inversely,
for test displays the cumulative surface area and contour length
were positively correlated with number. Item size was kept con-
stant (0.5 cm � 1.3 cm) while the display size varied across num-
bers, so that density was held constant at 0.06 elements per cm2.
In this way, the continuous, non-numerical variables that varied
during habituation were held constant during test, and vice versa.
2.1.3. Design and procedure
During the habituation phase, half of the infants viewed

increasing sequences and the other half viewed decreasing
sequences. Infants were randomly assigned to each habituation
condition. The three different numerical sequences were cycled
until the infant reached the habituation criterion and were pre-
sented in a fixed order: from the smallest to the largest numerical
display for the increasing condition (i.e., 6–12–24; 9–18–36;
12–24–48), and from the largest to the smallest for the decreasing
condition (i.e., 48–24–12; 36–18–9; 24–12–6). In this way, the
numerical magnitudes increased or decreased within, as well as
between, each habituation sequence, so as to provide redundant
cues to ordinality. Following habituation, all infants viewed six test
trials with new numerical values alternating increasing and decreas-
ing sequences. Test order was counterbalanced across participants.

Infants sat in an infant seat at approximately 60 cm from the
stimulus presentation monitor (2400 screen size, 1920 � 1200 pixel
resolution). A video camera positioned just above the monitor
recorded the infants’ face and sent visual input to another com-
puter monitor, thus allowing the online coding of infants’ looking
times through an E-Prime program by an experimenter who was
blind to the experimental condition. The infants’ face was also
recorded via a Mini-Dv digital recorder, so that a second observer
could code offline gaze direction for half of the infants in the sam-
ple to establish inter-observer reliability. Intercoder agreement
between the two observers who coded the data live or from digital
recording, as computed on total fixation times on each of the six
test trials, was very robust (r = 0.98, Pearson correlation; 0.99
Intra-Class Correlation coefficient).

Each trial began as soon as the infant looked in the direction of a
cartoon-animated image associated to a varying sound displayed
in the center of the screen. Every trial consisted in a repeating cycle
(6500 ms in total) composed of a gray screen (500 ms) followed by
the three numerical displays, consecutively presented on a black
background (each numerical display appeared every 2 s and was
composed of 250 ms blank + 1750 ms numerical array; Fig. 2). Each
trial continued until the infant looked for a minimum of 500 ms
and ended when the infant looked away continuously for 2 s or
looked for a maximum of 120 s. The three habituation sequences
were presented in a fixed order until the infant viewed 14 trials
or met the habituation criterion (a 50% decline in looking time
on three consecutive trials, relative to the looking time on the first
three trials that summed to at least 12 s). Following habituation,
infants viewed six test trials in which a novel sequence (increasing
for infants habituated to decreasing sequences, and vice versa) was
presented alternated to a familiar one, with half of the infants see-
ing the novel test sequence first.

2.2. Results and discussion

An ANOVA with habituation condition (increasing vs. decreas-
ing) as between-subjects factor, and habituation trials (first three
vs. last three) as within-subjects factor revealed a significant effect
of habituation trials, F(1,22) = 42.69, p < 0.001, due to average
looking time on the first three habituation trials (M = 18.3 s) being
significantly longer than average looking time on the last three tri-
als (M = 6.6 s). There was no main effect or interaction involving
habituation condition (both Fs < 1, n.s.). No differences in overall
looking time or number of trials to habituate were found across
the two habituation conditions: For the increasing sequences
infants required an average of 100.5 s and 6.9 trials to habituate,



Fig. 2. Description of the procedure of stimuli presentation.
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for the decreasing sequences infants required 87.7 s and 7.4 trials
(unpaired t-tests, both ts < 1, n.s., two-tailed).

To assess whether infants were able to discriminate the familiar
from the novel order at test, an ANOVA with habituation condition
(increasing vs. decreasing) and first test trial (familiar vs. novel) as
between-subjects factors, and trial pair (first vs. second vs. third)
and test trial type (familiar vs. novel ordinal direction) as within-
subjects factors was performed on total looking times during test
trials. There were no significant main effects or interactions (all
Fs < 1.42, all ps > 0.24), except for a significant Test trial type x First
test trial interaction, F(1,20) = 7.35, p = 0.013, gp2 = 0.27. Although,
overall, infants’ looking times were virtually identical for the novel
(M = 9.1 s, SD = 3.3) and familiar orders (M = 9.2 s, SD = 4.3) in test
trials, F(1,20) < 1, p = 0.83 (see Table 1), LSD post hoc comparisons
revealed that differences in looking times for familiar and novel
test trials were marginally significant only for infants who received
the novel test trial first, with longer looking to novel (M = 10.8 s,
SD = 4.3) than to familiar (M = 8.7 s, SD = 2.7; p = 0.051) trials
(Fig. 3).

The failure to discriminate numerical order at test was con-
firmed by separate paired t-tests (two-tailed) for each habituation
condition: in the increasing habituation condition infants’ looking
times to the decreasing (novel) order at test (M = 8.6 s, SD = 4.5)
were identical to their looking times to the increasing (familiar)
Table 1
Looking times (in seconds) during Novel and Familiar test trials (3 pairs) for infants habitua
Note that in Experiment 1 the ratio was 1:2, while in Experiments 2 and 3 the ratio was

Experiment Habituation type Test pairs

Pair 1

Familiar

1 Ratio 1:2 Increasing Mean 8.68
SEM 1.65

Decreasing Mean 10.08
SEM 1.48

2 Ratio 1:3 Increasing Mean 9.39
SEM 1.69

Decreasing Mean 17.28
SEM 3.45

3 Ratio 1:3 Increasing Mean 5.84
SEM 1.23

Decreasing Mean 6.13
SEM 0.96
order (M = 8.4 s, SD = 3.1; t < 1, p = 0.86); in the decreasing habitu-
ation condition, looking times to the increasing (novel) order
(M = 9.9 s, SD = 4.1) were also identical to the looking times to
the decreasing (familiar) order (M = 9.8 s, SD = 3.3; t < 1, p = 0.94).
Only 5 out of 12 infants in both the increasing (sign test:
z = 0.29, p = 0.77; Wilcoxon signed-rank test: z = 0.47, p = 0.64),
and the decreasing habituation conditions (sign test: z = 0.29,
p = 0.77; Wilcoxon signed-rank test: z = 0.08, p = 0.94) showed a
novelty preference at test.

In Experiment 1, where changes in numerosity followed a 1:2
ratio, infants did not show a reliable ability to discriminate numer-
ical ordinal directions, and no asymmetry was found either, as
infants failed in both the increasing and decreasing habituation
conditions. However, it is possible that such failure depended on
infants’ poor discrimination of numerical information and not to
their inability to detect and represent numerical order per se. Since
acuity for number discrimination increases with age, from a
required 1:3 ratio at birth (Izard et al., 2009) to a 1:2 ratio at
6 months of age (Xu & Spelke, 2000), it might be possible that 4-
month-old infants needed a larger ratio to encode numerical order
and show successful discrimination of order inversion at test.
Therefore, a new group of infants was tested in Experiment 2, in
which the ratio difference between the numerical displays was
increased to 1:3.
ted to increasing or decreasing numerical sequencing, separately for each Experiment.
1:3.

Pair 2 Pair 3

Novel Familiar Novel Familiar Novel

8.20 8.69 9.18 7.77 8.53
1.58 1.72 2.79 1.39 1.56
11.62 11.08 10.30 8.22 7.66
2.07 2.92 2.35 1.62 1.51

12.52 5.58 10.07 6.64 8.66
2.39 1.44 3.20 0.89 1.48
16.43 7.00 9.01 7.32 6.36
3.12 1.37 2.88 2.98 0.66

10.28 3.79 4.66 4.71 6.27
2.40 0.59 0.90 0.72 1.01
8.91 3.78 4.99 6.70 4.08
1.84 0.62 0.93 1.56 1.07



Fig. 3. Mean total looking time (±SE) in Experiment 1 to the first three and last three habituation trials and to familiar and novel test trials for infants in the increasing (left)
and decreasing (right) habituation conditions. Numerical displays differed by a 1:2 ratio.
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3. Experiment 2 (1:3 ratio)

In Experiment 2, infants were habituated to either increasing or
decreasing numerical sequences, and were tested with new
sequences displaying both the familiar and the novel orders in
alternation. The ratio difference between numerical displays con-
tained in the increasing and decreasing sequences was 1:3.

3.1. Methods

Apparatus, design and procedure were the same as in Experi-
ment 1, with the exception that the numerical values in each
sequence differed from one another by a 1:3 ratio.

3.1.1. Participants
Twenty-four healthy, full term 4-month-old infants (M age = 4 -

months, 19 days; range = 4 months, 4 days – 4 months, 30 days; 14
female) took part to this experiment. Twelve additional infants
were excluded from the final sample because they failed to com-
plete testing due to fussiness or lack of interest (n = 11; 5 in the
increasing and 6 in the decreasing habituation condition), or look-
ing times in at least one test trial more than 3 SD from the overall
group mean (n = 1).

3.1.2. Stimuli
The first set of habituation stimuli was composed of 4, 12, 36

items, the second of 6, 18, 54 items, and the third one of 8, 24,
72 items. The set of stimuli presented in the test phase was com-
posed of 5, 15, 45 items. Thus, the number of items contained in
each sequence increased or decreased by a 1:3 ratio (Fig. 4).

As in Experiment 1, non-numerical continuous variables were
controlled by keeping cumulative surface area and contour length
constant within each habituation set. The heights of the single
items in the smaller, medium and larger numerosity display were,
respectively, 8.3, 2.6, and 0.7 cm in the first two sets, and 7.0, 2.2,
and 0.6 cm in the third set, with the width constant at �0.2 cm. For
all sets the area of each habituation display was held constant at
approximately 261 cm2, so that number covaried with density.
For test sets, cumulative surface area and contour length were pos-
itively correlated with number. Item size was kept constant
(0.3 cm � 0.7 cm) while the display size varied across numbers,
so that density was held constant at 0.17 elements per cm2. This
way, the continuous, non-numerical variables that varied during
habituation were held constant during test, and vice versa.

3.1.3. Design and procedure
Intercoder agreement between the two observers who coded

the data live or from digital recording, as computed on total fixa-
tion times on each of the six test trials, was very robust (r = 0.99,
Pearson correlation; 0.99 Intra-Class Correlation coefficient).

3.2. Results and discussion

An ANOVA with habituation condition (increasing vs. decreas-
ing) as the between-subjects factor, and habituation trials (first
three vs. last three) as the within-subjects factor revealed a signif-
icant effect of habituation trials, F(1,22) = 173.75, p < 0.001, due to
average looking time on the first three habituation trials
(M = 14.6 s) being significantly longer than average looking time
on the last three habituation trials (M = 5.3 s). Neither the effect
of habituation condition F(1,22) = 2.42, p = 0.13, nor the interaction
involving this factor, F < 1, n.s., were significant. No differences in
overall looking time and number of trials to habituate were found
across the two habituation conditions: For the increasing numeri-
cal sequences, infants required an average of 56.7 s and 6.3 trials to
habituate; for the decreasing numerical sequences, infants
required 72.9 s and 6.3 trials (unpaired t-tests, both ts < 1.6, n.s.,
two-tailed).

To assess discrimination of numerical order at test, an ANOVA
with habituation condition (increasing vs. decreasing) and first test
trial (familiar vs. novel) as between-subjects factors, and trial pair
(first vs. second vs. third) and test trial type (familiar vs. novel ordi-
nal direction) as within-subjects factors was performed on total
looking times during test trials. There was a significant main effect
of trial pair, F(2,40) = 12.1, p < 0.001, due to a decrease in overall
looking times across the three pairs of test trials (first pair,
M = 13.9 s, SD = 8.8; second pair, M = 7.9 s, SD = 6.7; third pair,
M = 7.2 s, SD = 4.3). Critically, there was also a main effect of test
trial type, F(1,20) = 6.2, p = 0.02, gp2 = 0.24, which was qualified
by a significant Test trial type x Habituation condition interaction,
F(1,20) = 5.7, p = 0.02, gp2 = 0.22. Infants looked overall longer to
the novel (M = 10.5 s, SD = 5.9) than to the familiar (M = 8.9 s,
SD = 5.4) order across the three test trial pairs, but this was true
only for infants habituated to the increasing order (familiar order,



Fig. 4. Examples of the stimuli presented in Experiment 2, including the three stimuli set used in habituation (left) and the stimuli used in test (right). In habituation,
numerical displays within a given numerical sequence had the same background shape (rhomboid, circular, squared). Numerical displays differed by a 1:3 ratio.
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M = 7.2 s, SD = 3.2 vs. novel order, M = 10.4 s, SD = 5.4; p = 0.002,
LSD post hoc tests), not for those habituated to the decreasing
order (familiar order, M = 10.5 s, SD = 6.7 vs. novel order,
M = 10.6 s, SD = 6.5; p = 0.9) (see Table 1). No other effects or inter-
actions were significant, all ps > 0.06 (Fig. 5).

The presence of the asymmetry was confirmed by a series of
paired t-tests (two-tailed) within each habituation condition:
again, infants habituated to the increasing order looked signifi-
cantly longer at the decreasing (novel) order (M = 10.4 s, SD = 5.4)
than to the increasing (familiar) order at test (M = 7.2 s, SD = 3.2;
t = 3.53, p = 0.004); in contrast, infants habituated to the decreas-
ing order looked equally long to the increasing (novel) order
(M = 10.6 s, SD = 6.5) and to the decreasing (familiar) order
(M = 10.5 s, SD = 6.7; t < 1, p = 0.94). This novelty preference in
the increasing habituation condition was shown by 11 of the 12
infants (sign test: z = 2.6, p = 0.009; Wilcoxon signed-rank test:
z = 2.9, p = 0.002), while it was shown only by 7 of the 12 infants
Fig. 5. Mean total looking time (±SE) in Experiment 2 to the first three and last three hab
and decreasing (right) habituation conditions. Numerical displays differed by a 1:3 ratio
in the decreasing habituation condition (sign test: z = 0.29,
p = 0.77; Wilcoxon signed-rank test: z = 0.39, p = 0.69).

Results of Experiment 2 show that at 4 months of age infants
reliably discriminate numerical order provided that the numerical
displays differ by a 1:3 ratio, and the sequence is organized in an
increasing order. When considered together with an earlier
demonstration that 4-month-old infants can order surface area in
size-based sequences (Macchi Cassia et al., 2012), these findings
support the idea of a common, or at least parallel, development
of the ability to extract ordinality from both discrete and continu-
ous quantity dimensions. Moreover, the finding that the asymme-
try signature previously found for the dimension of size, with
successful discrimination of increasing order but failure with
decreasing order (Macchi Cassia et al., 2012), is also present for
the dimension of number, shows that a common processing con-
straint characterizes ordinal representation for both number and
size.
ituation trials and to familiar and novel test trials for infants in the increasing (left)
.



184 M.D. de Hevia et al. / Cognition 158 (2017) 177–188
In order to strengthen our claims, we conducted Experiment 3
so as to replicate the presence of the asymmetry in numerical order
discrimination at 4 months of age. We employed the same 1:3 ratio
as in Experiment 2, but the numerosities considered changed
slightly: the ratio of the numerical variations across habituation
trials was raised to 1:2, and the numerosities used in the test trials
were larger than in Experiment 2.

4. Experiment 3 (1:3 ratio; replica with different numerosities)

Experiment 3 was conducted to replicate the findings of Exper-
iment 2. We used the same ratio as in Experiment 2 for within-
trials variations (i.e., 1:3), but the chosen numerosities partially
differed from Experiment 2: we employed a new set of numerical
items in the habituation phase, as well as a new set of numerical
items in the test phase.

4.1. Methods

Apparatus, design, procedure, and ratio were the same as in
Experiment 2, with the exception that one set of habituation and
test stimuli were composed of different items.

4.1.1. Participants
Twenty-four healthy, full term 4-month-old infants (M age = 4 -

months, 14 days; range = 3 months, 29 days – 5 months, 9 days; 14
female) took part in this experiment. Three additional infants were
excluded from the final sample because of being uncooperative.

4.1.2. Stimuli
The first set of habituation stimuli was composed of 4, 12, 36

items, the second of 8, 24, 72 items, and the third one of 16, 48,
144 items. The set of stimuli presented in the test phase was com-
posed of 9, 27, 81 items (Fig. 6). Thus, the number of items con-
tained in each sequence increased or decreased by a 1:3 ratio as
in Experiment 2. As in Experiments 1 and 2, non-numerical contin-
uous variables were controlled by keeping cumulative surface area
and contour length constant within each habituation set. The
heights of the single items in the smaller numerosity display were
8.3, 2.6, and 0.7 cm; in the medium numerosity display 7.0, 2.2,
and 0.6 cm; in the larger numerosity display 8, 2.5, 0.5 cm. The
width was kept constant at �0.2 cm in all displays, and the area
Fig. 6. Examples of the stimuli presented in Experiment 3, including the three stimuli
numerical displays within a given numerical sequence had the same background shape
of each habituation display was held constant at approximately
261 cm2, so that number covaried with density. For test sets,
cumulative surface area and contour length were positively corre-
lated with number. Item size was kept constant (0.2 cm � 0.5 cm)
while the display size varied across numbers, so that density was
held constant at 0.17 elements per cm2. This way, the continuous,
non-numerical variables that varied during habituation were held
constant during test, and vice versa.

4.1.3. Design and procedure
Intercoder agreement between the two observers who coded

the data live or from digital recording, as computed on total fixa-
tion times on each of the six test trials, was very robust (r = 0.99,
Pearson correlation; 0.99 Intra-Class Correlation coefficient).

4.2. Results and discussion

An ANOVA with habituation condition (increasing vs. decreas-
ing) as between-subjects factor, and habituation trials (first three
vs. last three) as within-subjects factor revealed a significant effect
of habituation trials, F(1,22) = 20.598, p < 0.001, due to average
looking time on the first three habituation trials (M = 11.1 s) being
significantly longer than average looking time on the last three
habituation trials (M = 4.2 s). Neither the effect of habituation con-
dition, nor the interaction involving this factor, were significant,
both Fs < 0.1, n.s. No differences in overall looking time and num-
ber of trials to habituate were found across the two habituation
conditions: For the increasing numerical sequences, infants
required an average of 57.7 s and 9.3 trials to habituate; for the
decreasing numerical sequences, infants required 60.1 s and 7.5
trials (unpaired t-tests, both ts < 1.5, n.s., two-tailed).

To assess discrimination of numerical order at test, an ANOVA
with habituation condition (increasing vs. decreasing) and first test
trial (familiar vs. novel) as between-subjects factors, and trial pair
(first vs. second vs. third) and test trial type (familiar vs. novel ordi-
nal direction,) as within-subjects factors, was performed on total
looking times during test trials. There was a significant main effect
of trial pair, F(2,40) = 6.03, p = 0.005, gp2 = 0.23, due to the higher
looking times in the first pair of test trials (first pair, M = 7.8 s,
SD = 5.2; second pair, M = 4.3 s, SD = 2.5; third pair, M = 5.4 s,
SD = 3.6). Critically, there was a main effect of test trial type, F
(1,20) = 10.77, p = 0.004, gp2 = 0.25, which was qualified by a
significant Test trial type x Habituation condition interaction, F
set used in habituation (left) and the stimuli used in test (right). In habituation,
(rhomboid, circular, squared). Numerical displays differed by a 1:3 ratio.
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(1,20) = 4.76, p = 0.041, gp2 = 0.19. Infants looked significantly
longer to the novel (M = 6.5 s, SD = 3.4) than to the familiar
(M = 5.1 s, SD = 2.4) order at test, but this was true for infants
habituated to the increasing order only (familiar order, M = 4.8 s,
SD = 2.6 vs. novel order, M = 7.1 s, SD = 4.2; p < 0.001, LSD post
hoc tests). Those habituated to decreasing order looked equally
long to both orderings at test (familiar order, M = 5.5 s, SD = 2.3
vs. novel order, M = 6 s, SD = 2.5; p = 0.45) (Fig. 7). The interaction
between Test trial type � Trial pair was also significant, F(2,40)
= 4.7, p = 0.015, as the difference between looking times towards
familiar and novel ordering at test, overall for both habituation
conditions considered together, was significant only for the first
pair of test trials (familiar, M = 6.0 s, SD = 3.9 vs. novel, M = 9.6 s,
SD = 7.6, p < 0.001 LSD post hoc tests) but not for the second (famil-
iar, M = 3.8 s, SD = 2.1 vs. novel, M = 4.8 s, SD = 3.3, p = 0.3) or the
third pair (familiar, M = 5.7 s, SD = 4.4 vs. novel, M = 5.2 s,
SD = 3.8, p = 0.6) (see Table 1). No other effects or interactions were
significant, all ps > 0.2.

The presence of the asymmetry in infants’ discrimination per-
formance at test was confirmed by a series of paired t-tests
(two-tailed) within each habituation condition: infants habituated
to the increasing order looked significantly longer to the decreas-
ing (novel) order (M = 7.1 s, SD = 4.2 s) than to the increasing
(familiar) order (M = 4.8 s, SD = 2.6; t = 3.19, p = 0.009), while
infants habituated to the decreasing order looked equally long to
the increasing (novel) order (M = 6 s, SD = 2.5) and to the decreas-
ing (familiar) order (M = 5.5 s, SD = 2.3; t < 1.5, p = 0.23). The nov-
elty preference in the increasing habituation condition was
shown by 10 of the 12 infants (sign test: z = 2, p = 0.04; Wilcoxon
signed-rank test: z = 2.4, p = 0.01), while it was shown only by 7
of the 12 infants in the decreasing habituation condition (sign test:
z = 0.29, p = 0.77; Wilcoxon signed-rank test: z = 0.47, p = 0.64).

Results of Experiment 3 closely replicate those found in Exper-
iment 2 when using slightly different numerosities, and provide
further evidence that at 4 months of age infants reliably discrimi-
nate numerical order when the difference between numerosities
follows a 1:3 ratio, and, most critically, when the sequence is orga-
nized in an increasing order. Together with Experiment 2, these
findings support the idea of an early asymmetry in the understand-
ing of numerical order, with successful discrimination of increasing
order and a failure to discriminate decreasing order.
Fig. 7. Mean total looking time (±SE) in Experiment 3 to the first three and last three hab
and decreasing (right) habituation conditions. Numerical displays differed by a 1:3 ratio
5. General discussion

This study investigated the ability to represent and discriminate
increasing versus decreasing numerical sequences in early infancy.
The results show that, at least from 4 months of age, infants can
discriminate numerical order, provided that numerical differences
are large enough (i.e., a 1:3 ratio in the present study) and, most
important, that changes in numerosity follow an increasing order.
This pattern of results is not related to differences in the amount of
information available during the habituation phase, as infants
received a comparable number of trials and looked for equal
amounts of time before being presented with the testing phase.
Although one might argue that, in order for infants in the increas-
ing habituation condition to successfully discriminate between the
familiar and novel sequences at test successful abstraction of
decreasing order must occur, we think this is not the case. Infants
might discriminate increasing from decreasing order at test with-
out truly representing the ordinal information conveyed by the
decreasing test sequence. The decreasing sequence might be in fact
simply represented as a collection of different numerical sets, with
no encoding of the directionality of the change. Indeed, in the case
of size ordering, it has been shown that 4-month-olds fail to dis-
criminate a sequence in which the size of an object consistently
decreases from a sequence where the same size values follow no
consistent directional change (Macchi Cassia et al., 2012). While
the magnitude differences between the numerical displays in the
decreasing condition of the current study were probably success-
fully processed, the ordinal information contained in the progres-
sive changes was not encoded.

The ratio-dependent performance across experiments (1:2 in
Experiment 1 vs. 1:3 in Experiments 2 and 3) reinforces the view
that discrimination involved in this task was supported by the
ANS, whose main processing signature is that discrimination fol-
lows Weber’s law (Dehaene et al., 1999). Indeed, although 4-
month-old infants in this study needed a 1:3 ratio (i.e., the same
ratio required by newborns) to discriminate increasing numerical
sequences, results do not imply that infants at this age need the
same numerical difference as newborns in order to successfully
discriminate two numerical quantities. Although no study has
tested for this possibility, it is plausible that acuity for numerical
discrimination significantly increases during the first four months
ituation trials and to familiar and novel test trials for infants in the increasing (left)
.
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of life from a 1:3 ratio (e.g., 4 vs. 12) to a ratio slightly larger than
1:2, as for instance 1:2.5 (e.g., 4 vs. 10). Available studies show that
6-month-old infants succeed at discriminating 1:2 ratio numerical
differences (Xu & Spelke, 2000); that is, we cannot exclude that 4-
month-olds could successfully discriminate numerosities differing
by the same ratio under specific conditions, such as an exposure
time to the numerical displays longer than the one used in the pre-
sent study (i.e., 1750 ms). In fact, it has been shown that 4- to 5-
month-old infants can discriminate two numerosities differing by
a 1:2 ratio provided that numerical displays are presented for 2 s,
but not when the displays are presented for a shorter time (i.e.,
1 s or 1.5 s; Wood & Spelke, 2005).

Of note, in previous studies on size-based ordinal discrimina-
tion with 4-month-old infants, a 1:2 ratio difference was enough
for obtaining successful discrimination under the same testing
conditions (i.e., stimulus duration) used in the present study
(Macchi Cassia et al., 2012). Therefore, current results suggest that
acuity in magnitude discrimination is lower for number than size
at 4 months of age. Indeed, although infant research has advocated
for similar ratio signatures during the first year of life for number
and size (Brannon, Lutz, & Cordes, 2006; Feigenson, 2007), it is pos-
sible that subtle differences in processing these two quantitative
dimensions remained undetected in previous studies. This is plau-
sible in light of recent demonstration that the developmental tra-
jectory of the acuity of 3- to 6-year-old children’s representations
of number and size differs in important respects, such that size
representations have higher acuity than number representations
and improvements in acuity occur more quickly for size than num-
ber (Odic, Libertus, Feigenson, & Halberda, 2013). On the basis of
the present and previous findings, it could be claimed that infants
compute ordinal operations by manipulating differentially devel-
oped representations of quantity (for number and size separately)
while both sharing common ordinal signatures.

With regard to infants’ sensitivity to discrete and continuous
dimensions, one could claim that infants’ performance in the cur-
rent study was not based on them attending solely to the dimen-
sion of number, but also to other continuous dimensions. Indeed,
it might be possible that during habituation infants were attending
to changes in density across the displays (as habituation displays
differed in density as well as in number), and were then mapping
the directionality of those changes to physical size during test (as
test displays differed in the size of the enveloping area as well as
in number). However, we favor the interpretation of infants’ per-
formance in terms of numerical processing. In fact, infants’ studies
have shown that, when number is pitted against continuous vari-
ables, such as cumulative surface area, infants spontaneously
attend to numerical information (Brannon, Abbott, & Lutz, 2004;
Cordes & Brannon, 2009). Moreover, when infants are presented
with sets of discrete items, as in the present study, they not only
favor number over elements’ size, contour length, and/or cumula-
tive surface area in their response, but also show greater sensitivity
to changes across the former dimension than across the latter ones
(Cordes & Brannon, 2011; Libertus, Starr, & Brannon, 2014). In light
of this evidence, we view the interpretation of infants’ performance
in the current study as based on their processing of numerical
changes, which remains available between both the habituation
and the test phases, as the most parsimonious.

Irrespective of whether infants attended solely to number or
also to other continuous dimensions, the present study provides
new evidence on the developmental origins of the ability to repre-
sent ordinal information in human infants. By employing non-
symbolic numerical displays, our findings indicate that discrimina-
tion of ordinal numerical sequences is present at 4 months of age,
as it does for the dimension of size. This supports the view of a
common (or at least parallel) development of the ordinal ability
for these two dimensions of magnitude (number and size). Future
studies investigating this ability in human newborns could deter-
mine whether there is an initial advantage for discriminating order
in any of these dimensions at birth. In any event, the present study
adds to previous evidence suggesting that at 4 months, the earliest
age at which this ability has been tested, infants display the ordinal
ability for both number and size dimensions. The view of a com-
mon development of the ordinal ability is in line with evidence
showing that the intraparietal sulcus (IPS) is involved in the pro-
cessing of both numerical order and size-based ordinal sequences
in children (Kaufmann, Vogel, Starke, Kremser, & Schocke, 2009),
and that the internal structure of children’s conception of different
ordered sequences (numbers, letters, months) is the same, such
that an initial logarithmic mapping shifts gradually towards a lin-
ear one across numerical and non-numerical sequences (Berteletti,
Lucangeli, & Zorzi, 2012).

This study shows, most crucially, that sensitivity to ordinal rela-
tions in non-symbolic numbers at 4 months of age is characterized
by the signature of asymmetry, that is, the advantage for process-
ing increasing over decreasing magnitudes. Since this asymmetry
has been previously reported in size discrimination, this result sup-
ports the view of a common processing signature of ordinal dis-
crimination for size and number at this age. The asymmetry in
infants’ sensitivity to non-symbolic ordinal information has been
also reported in non-human animals; studies with monkeys report
an advantage for increasing over decreasing order, such that mon-
keys are able to generalize to new numbers a previously learned
increasing order, but they fail this generalization for decreasing
order (Brannon & Terrace, 2000). Of note, the advantage for
increasing over decreasing order is not apparent by the time
human infants are aged 7–9 months, neither for the dimensions
of number (de Hevia & Spelke, 2010; Picozzi et al., 2010), nor for
size (de Hevia & Spelke, 2010; Srinivasan & Carey, 2010). It is still
plausible, however, that the asymmetry signature might be at the
roots of related cognitive operations mediated by the ANS, opera-
tions that carry in their performance pattern the computational
attributes of this system.

In fact, as previous reports of an asymmetry in ordering size by
4-month-olds have suggested (Macchi Cassia et al., 2012), this phe-
nomenon might be a developmental precursor of the easiness of
addition relative to subtraction, as reflected in arithmetical perfor-
mance from childhood to adulthood (Barth et al., 2008; Campbell &
Xue, 2001). With large non-symbolic sets, adults and young chil-
dren are more accurate with addition than with subtraction prob-
lems (Barth et al., 2006; Kamii, Lewis, & Kirkland, 2001). The
‘addition advantage’ in symbolic arithmetic has been explained
by the fact that more time is allowed in formal education to addi-
tion problems, as addition and subtraction are taught hierarchi-
cally. Addition is indeed considered the foundation for
subtraction, and the processing of counting-down for subtraction
is commonly more time-consuming that the processing of
counting-up for addition (Baroody, 1984; Canobi, 2005;
Carpenter & Moser, 1984; Fuson, 1984). Other researchers have
interpreted this phenomenon as due to differences in the variance
associated to the numerical representations, and not necessarily to
an intrinsic difficulty in subtraction compared to addition: for a
given quantity (e.g., 5), the representation is fuzzier when it is
the result of a subtraction relative to an addition, as variance asso-
ciated to each operand is added up (e.g., 10–5 vs. 3 + 2) (Barth et al.,
2006).

We believe that both factors, i.e., variability in counting and
fuzziness, might account for this phenomenon only partially, as
other early cognitive constraints that precede counting skills and
formal education might underlie this phenomenon. On the one
hand, young children’s performance in arithmetical operations
(addition and subtraction) with large non-symbolic numbers
seems to be independent from counting abilities, and heavily relies
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on the ANS (Shinskey et al., 2009; Slaughter, Kamppi, & Paynter,
2006). On the other hand, when the variance of the numerical sets
is controlled for, performing addition seems to be as easy as per-
forming a simple comparison, but performance in subtraction is
still worse than in a simple comparison (Gilmore & Spelke,
2008). In fact, the variance associated to the different numerical
displays in the present study is exactly the same for both orderings,
as both increasing and decreasing orders contain the same
numerosities, the only difference being the direction of numerical
change. The fact that representing the decrease in numerical mag-
nitude is harder that the reverse in the first months of life might be
at the origins of the addition advantage, or it might share with it
common psychological roots. Since the asymmetry signature might
constitute a processing constraint of the ANS characterizing the
ordering of numerical representations, this signature might perme-
ate cognitive tasks that rely on such system.

There is indeed evidence that the specific order in which quan-
tities are processed strongly impacts adults’ performance in com-
parison tasks. In particular, adults exhibit the so-called
‘ascending order advantage’, which reflects higher performance
in comparing two quantities when the smaller is temporally fol-
lowed by the larger one (increasing order), relative to when the
smaller is temporally preceded by the larger one (decreasing order)
(Müller & Schwarz, 2008). This effect has been shown for numeri-
cal quantities (Müller & Schwarz, 2008), physical size (Ben-Meir,
Ganor-Stern, & Tzelgov, 2013), and even fractions (Ganor-Stern,
2015). Although initially thought to reflect established counting
habits that create forward associations between consecutive num-
bers (Müller & Schwarz, 2008), evidence showing that it extends to
physical size and fractions undermines this interpretation. A more
ecological view known as ‘Embodied Arithmetic’ has proposed that
the increasing order advantage might emerge from extensive expe-
rience with natural objects that grow in size across time, such that
associations of the type ‘early in time-small size’ and ‘later in time-
larger size’ are created (Lakoff & Núñez, 2000). Nonetheless, our
study provides evidence that the advantage for increasing order
for numerical sequences is present at an age when infants have
had a relatively limited exposure to the growing dynamics of nat-
ural objects. It is therefore plausible that this phenomenon might
find its roots in our evolutionary history.

In fact, from an evolutionary perspective, the advantage for
increasing vs. decreasing order might have been selected because
it is relevant for survival. The ability to successfully detect and
keep track of increasing number and/or increasing size might be
critical in ecological contexts: a progressively approaching object
and/or an increasing number of predators is more harmful than
the progressive decreasing in their number/size. However, this idea
should be put to test. Another possibility is related to the ability
that humans and non-human animals possess from very early in
life to perceive impending collision and react defensively to a stim-
ulus that is approaching but not to one that withdraws from view-
er’s location (Ball & Tronick, 1971; Schiff, Caviness, & Gibson,
1962). Human infants from the first weeks of life react defensively
to a ‘looming’ (expanding) stimulus by blinking and withdrawing
their heads, as this type of display optically signals approach, but
they do not react with avoidance to a ‘zooming’ (contracting) stim-
ulus as it signals a receding object (Ball & Tronick, 1971; Náñez,
1988). Moreover, looming stimuli enhance infants’ detection and
reaction towards increasing stimuli (Walker-Andrews & Lennon,
1985), and continue to exert similar effects into adulthood (Cléry,
Guipponi, Odouard, Wardak, & Ben Hamed, 2015). We propose
that, as a result of the alerting effect associated to perceptual loom-
ing, infants might develop a processing advantage for the ordinal
information embedded in looming stimuli (which entail increasing
order), whereas this enhancement might not emerge for the infor-
mation of ordinality associated to zooming stimuli (which entail
decreasing order). This would explain why, even in the absence
of objective looming stimuli (as they are absent in this and in an
earlier study by Macchi Cassia et al. (2012)), processing of increas-
ing magnitude is enhanced and/or privileged in 4-month-old
infants. Therefore, we suggest that the looming/zooming phenom-
ena might be at the roots of the asymmetry signature in ordinal
processing (i.e., advantage for increasing relative to decreasing),
both for ordinality in size (even when the looming/zooming effects
are controlled for), as found in Macchi Cassia et al. (2012) study,
and for ordinality in number, as found in the present study.

In order to fully understand both the origins and the develop-
mental course of ordinal understanding, future research will have
to establish whether all continuous dimensions (e.g., time, lumi-
nance or loudness), which by their nature are intrinsically ordered,
show the same asymmetry signature described in infants and
adults for physical size (Ben-Meir et al., 2013; Macchi Cassia
et al., 2012) and number (Müller & Schwarz, 2008; current study).
While it is possible that all magnitude dimensions share this signa-
ture from the earliest stages of development, it is also possible that
the advantage for increasing order is a unique property of a specific
dimension, like number and/or size, and generalizes to other sim-
ilarly structured magnitude dimensions during development.
However, this generalization is likely to take place after the first
year of life. In fact, although ordinal information can be generalized
from sets of numerosities to sets of line lengths at 8 months (de
Hevia & Spelke, 2010), infants at this same age fail to generalize
order from numerical sequences to sequences that contain changes
in luminance intensity (de Hevia & Spelke, 2013), or from changes
in size to changes in loudness (Srinivasan & Carey, 2010), suggest-
ing that the dimensions of number, luminance, size and loudness
do not all share an abstract sense of ordinality early in
development.
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